Two-photon fluorescence microscopy is used to detect ultraviolet-induced reactive oxygen species (ROS) in the epidermis and the dermis of ex vivo human skin and skin equivalents. Skin is incubated with the nonfluorescent ROS probe dihydrorhodamine, which reacts with ROS such as singlet oxygen and hydrogen peroxide to form fluorescent rhodamine-123. Unlike confocal microscopic methods, two-photon excitation provides depth penetration through the epidermis and dermis with little photodamage to the sample. This method also provides submicron spatial resolution such that subcellular areas that generate ROS can be detected. In addition, comparative studies can be made to determine the effect of applied agents (drugs, therapeutics) upon ROS levels at any layer or cellular region within the skin.