Spatiotemporal Regulation of Ras-GTPases During Chemotaxis

Many eukaryotic cells can elicit intracellular signaling relays to produce pseudopodia and move up to the chemoattractant gradient (chemotaxis) or move randomly in the absence of extracellular stimuli and nutrients (random movement). A precise spatiotemporal regulation of Ras-GTPases, such as Ras and Rap, is crucial to induce pseudopodia formation and cellular adhesion during the chemotaxis and random movement. Here, we describe biochemical and real-time imaging methods for usingDictyosteliumto understand the signaling events important for chemotaxis and random cell movement. The chapter includes (1) a biochemical method to assess Ras and Rap1 activation in response to chemoattractant, (2) an imaging method to detect endogenous Ras and Rap1 activation in moving cells, and (3) a simultaneous imaging method to decipher the precise order and localization of these signaling events. With a combination of powerfulDictyosteliumgenetics, these methods will facilitate to elucidate a dynamic activation of Ras proteins and their inter relay with other signaling molecules during chemotaxis and random movement.

内容来源:生物资料网,如果侵权麻烦联系网站工作人员删除!

艾美捷科技优势代理品牌

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: