Ribozymes (catalytic RNAs, RNA enzymes) are effective modulators of gene expression because of their simple structure, site-specific cleavage activity, and catalytic potential, and have potentially important implications for cancer gene therapy. Point mutations in the K-rasoncogene are found in approx 90% of human pancreatic carcinomas, and can be used as potential targets for specific ribozyme-mediated reversal of the malignant phenotype. In this study, we focused on in vitro manipulation of ribozyme targeting of the mutated K-rasoncogene in a human pancreatic carcinoma cell line. We evaluated the efficacy of an anti-K-rashammerhead ribozyme targeted against GUU-mutated codon 12 of the K-rasgene in cultured pancreatic carcinoma cell lines. The anti-K-rasribozyme significantly reduced cellular K-rasmRNA level (GUU-mutated codon 12) when the ribozyme was transfected into the Capan-1 pancreatic carcinoma cells. The ribozyme inhibited proliferation of the transfected Capan-1 cells. These results suggested that this ribozyme is capable of reversing the malignant phenotype in human pancreatic carcinoma cells.